Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Molecules ; 27(17)2022 Aug 30.
Article in English | MEDLINE | ID: covidwho-2023948

ABSTRACT

The advancements in nanotechnology and nanomedicine are projected to solve many glitches in medicine, especially in the fields of cancer and infectious diseases, which are ranked in the top five most dangerous deadly diseases worldwide by the WHO. There is great concern to eradicate these problems with accurate diagnosis and therapies. Among many developed therapeutic models, near infra-red mediated phototherapy is a non-invasive technique used to invade many persistent tumors and bacterial infections with less inflammation compared with traditional therapeutic models such as radiation therapy, chemotherapy, and surgeries. Herein, we firstly summarize the up-to-date research on graphene phototheranostics for a better understanding of this field of research. We discuss the preparation and functionalization of graphene nanomaterials with various biocompatible components, such as metals, metal oxides, polymers, photosensitizers, and drugs, through covalent and noncovalent approaches. The multifunctional nanographene is used to diagnose the disease with confocal laser scanning microscopy, magnetic resonance imaging computed tomography, positron emission tomography, photoacoustic imaging, Raman, and ToF-SMIS to visualize inside the biological system for imaging-guided therapy are discussed. Further, treatment of disease by photothermal and photodynamic therapies against different cancers and bacterial infections are carefully conferred herein along with challenges and future perspectives.


Subject(s)
Bacterial Infections , Graphite , Nanocomposites , Neoplasms , Bacterial Infections/diagnostic imaging , Bacterial Infections/therapy , Cell Line, Tumor , Graphite/therapeutic use , Humans , Multimodal Imaging , Nanocomposites/therapeutic use , Neoplasms/drug therapy , Neoplasms/therapy , Phototherapy , Theranostic Nanomedicine/methods
2.
Theranostics ; 11(18): 9054-9088, 2021.
Article in English | MEDLINE | ID: covidwho-1524532

ABSTRACT

In recent years tremendous effort has been invested in the field of cancer diagnosis and treatment with an overall goal of improving cancer management, therapeutic outcome, patient survival, and quality of life. Photodynamic Therapy (PDT), which works on the principle of light-induced activation of photosensitizers (PS) leading to Reactive Oxygen Species (ROS) mediated cancer cell killing has received increased attention as a promising alternative to overcome several limitations of conventional cancer therapies. Compared to conventional therapies, PDT offers the advantages of selectivity, minimal invasiveness, localized treatment, and spatio-temporal control which minimizes the overall therapeutic side effects and can be repeated as needed without interfering with other treatments and inducing treatment resistance. Overall PDT efficacy requires proper planning of various parameters like localization and concentration of PS at the tumor site, light dose, oxygen concentration and heterogeneity of the tumor microenvironment, which can be achieved with advanced imaging techniques. Consequently, there has been tremendous interest in the rationale design of PS formulations to exploit their theranostic potential to unleash the imperative contribution of medical imaging in the context of successful PDT outcomes. Further, recent advances in PS formulations as activatable phototheranostic agents have shown promising potential for finely controlled imaging-guided PDT due to their propensity to specifically turning on diagnostic signals simultaneously with photodynamic effects in response to the tumor-specific stimuli. In this review, we have summarized the recent progress in the development of PS-based multifunctional theranostic agents for biomedical applications in multimodal imaging combined with PDT. We also present the role of different imaging modalities; magnetic resonance, optical, nuclear, acoustic, and photoacoustic in improving the pre-and post-PDT effects. We anticipate that the information presented in this review will encourage future development and design of PSs for improved image-guided PDT for cancer treatment.


Subject(s)
Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Precision Medicine/methods , Humans , Neoplasms/therapy , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/metabolism , Reactive Oxygen Species , Theranostic Nanomedicine/methods , Tumor Microenvironment/drug effects
3.
Life Sci ; 278: 119580, 2021 Aug 01.
Article in English | MEDLINE | ID: covidwho-1225325

ABSTRACT

COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.


Subject(s)
COVID-19/therapy , Theranostic Nanomedicine/methods , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/therapeutic use , Drug Delivery Systems/methods , Humans , Immunization/methods , Nanotechnology/methods , Precision Medicine/methods , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification
4.
J Control Release ; 328: 112-126, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-735223

ABSTRACT

Destructive impacts of COVID-19 pandemic worldwide necessitates taking more appropriate measures for mitigating virus spread and development of the effective theranostic agents. In general, high heterogeneity of viruses is a major challenging issue towards the development of effective antiviral agents. Regarding the coronavirus, its high mutation rates can negatively affect virus detection process or the efficiency of drugs and vaccines in development or induce drug resistance. Bioengineered nanomaterials with suitable physicochemical characteristics for site-specific therapeutic delivery, highly-sensitive nanobiosensors for detection of very low virus concentration, and real-time protections using the nanorobots can provide roadmaps towards the imminent breakthroughs in theranostics of a variety of diseases including the COVID-19. Besides revolutionizing the classical disinfection procedures, state-of-the-art nanotechnology-based approaches enable providing the analytical tools for accelerated monitoring of coronavirus and associated biomarkers or drug delivery towards the pulmonary system or other affected organs. Multivalent nanomaterials capable of interaction with multivalent pathogens including the viruses could be suitable candidates for viral detection and prevention of further infections. Besides the inactivation or destruction of the virus, functionalized nanoparticles capable of modulating patient's immune response might be of great significance for attenuating the exaggerated inflammatory reactions or development of the effective nanovaccines and medications against the virus pandemics including the COVID-19.


Subject(s)
Biosensing Techniques/methods , COVID-19 Drug Treatment , COVID-19 Testing/methods , Drug Delivery Systems/methods , Nanotechnology/methods , Theranostic Nanomedicine/methods , Angiotensin-Converting Enzyme 2/metabolism , Antiviral Agents/administration & dosage , COVID-19/diagnosis , COVID-19/immunology , COVID-19 Testing/instrumentation , COVID-19 Vaccines/administration & dosage , Computer Simulation , Drug Carriers/chemistry , Equipment Design , Humans , Immunochemistry , Nanoparticles/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2
6.
Theranostics ; 10(13): 5932-5942, 2020.
Article in English | MEDLINE | ID: covidwho-501783

ABSTRACT

On the 30th of January 2020, the World Health Organization fired up the sirens against a fast spreading infectious disease caused by a newly discovered Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and gave this disease the name COVID-19. While there is currently no specific treatment for COVID-19, several off label drugs approved for other indications are being investigated in clinical trials across the globe. In the last decade, theranostic nanoparticles were reported as promising tool for efficiently and selectively deliver therapeutic moieties (i.e. drugs, vaccines, siRNA, peptide) to target sites of infection. In addition, they allow monitoring infectious sides and treatment responses using noninvasive imaging modalities. While intranasal delivery was proposed as the preferred administration route for therapeutic agents against viral pulmonary diseases, NP-based delivery systems offer numerous benefits to overcome challenges associated with mucosal administration, and ensure that these agents achieve a concentration that is many times higher than expected in the targeted sites of infection while limiting side effects on normal cells. In this article, we have shed light on the promising role of nanoparticles as effective carriers for therapeutics or immune modulators to help in fighting against COVID-19.


Subject(s)
Betacoronavirus , Coronavirus Infections/therapy , Nanoparticles/therapeutic use , Pneumonia, Viral/therapy , Theranostic Nanomedicine/methods , Administration, Intranasal , Antiviral Agents/administration & dosage , Betacoronavirus/drug effects , Betacoronavirus/genetics , Betacoronavirus/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/epidemiology , Coronavirus Infections/immunology , Coronavirus Infections/prevention & control , Drug Delivery Systems/methods , Humans , Nanoparticles/administration & dosage , Nanoparticles/chemistry , Pandemics , Pneumonia, Viral/epidemiology , Pneumonia, Viral/immunology , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/genetics , SARS-CoV-2 , Vaccines, Virus-Like Particle/administration & dosage , Viral Vaccines/administration & dosage , Viral Vaccines/immunology , Virus Internalization/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL